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Heuristis for Model Cheking Java ProgramsAlex Groe1, Willem Visser21 Shool of Computer Siene, Carnegie Mellon University, Pittsburgh, PA 15213-3891, USA, e-mail: agroe�s.mu.edu2 RIACS, NASA Ames Researh Center, Mo�ett Field, CA 94035, USA, e-mail: wvisser�email.ar.nasa.govThe date of reeipt and aeptane will be inserted by the editorAbstrat. Model heking of software programs has twogoals: one is the veri�ation of orret software. Theother is the disovery of errors in faulty software. Sometehniques for dealing with the most ruial problemin model heking, the state spae explosion problem,onentrate on the �rst of these goals. In this paper wepresent an array of heuristi model heking tehniquesfor ombating the state spae explosion when searhingfor errors. Previous work on this topi has mostly fo-used on property-spei� heuristis losely related topartiular kinds of errors. We present strutural heuris-tis that attempt to explore the struture (branhingstruture, thread inter-dependeny struture, abstra-tion struture) of a program in a manner intended toexpose errors eÆiently. Experimental results show theutility of this lass of heuristis. In ontrast to these verygeneral heuristis, we also present very lightweight teh-niques for introduing program-spei� heuristi guid-ane.1 IntrodutionThere has been reent interest in model heking soft-ware written in real programming languages [3,11,24,34,35,52℄. The primary hallenge in software model hek-ing, as in all model heking, is the state spae explosionproblem: exploring all of the behaviors of a system is,to say the least, diÆult when the number of behaviorsis exponential in the possible inputs, ontents of datastrutures, or number of threads in a program. A vastarray of tehniques have been applied to this problem [9℄,�rst in hardware veri�ation, and now, inreasingly, insoftware veri�ation [3,11,31℄. Many of these tehniquesrequire onsiderable non-automati work by experts ordo not apply as well to software as to hardware. Most

of these tehniques are aimed at reduing the size of thetotal state spae that must be explored, or represent-ing it symbolially so as to redue the memory and timeneeded for the exploration.Abstration tehniques (and spei�ally prediate ab-stration [26℄) have proven to be useful for software modelheking [3,31℄. However, applying suh abstrations isexpensive if the number of prediates required beomeslarge and determining whether an abstrat behavior isalso possible in the onrete program an be undeid-able. These tehniques have therefore been used mostlyto show properties dependent on the ontrol-ow of aprogram rather than to analyze systems where the prop-erties depend on data|e.g. show reahability of a state-ment or that a spei� sequene of API alls are possible,rather than show that a real-time sheduler will alwaysalloate eah thread its requested time.An alternative approah is to onentrate not on ver-ifying the orretness of programs but on dealing withthe state spae explosion when attempting to �nd er-rors. Rather than reduing the overall size of the statespae, we an attempt to �nd a ounterexample beforethe state explosion exhausts memory. Therefore produ-ing a ounterexample an be seen as searhing throughthe state spae of a system for a spei� (error) behavior.Rather than blindly searhing through the state-spae,as is ommon for traditional model heking, we an thenfous on using heuristis to guide the searh. Heuristimodel heking therefore aims at generating ounterex-amples by searhing the bug-ontaining part of the statespae �rst. Obviously we do not know, in general, whatpart of a program's state spae is going to ontain anerror, or even if there is an error present.A separate motivation for heuristi searh in bug-�nding is that although one of the strongest advantagesof model heking is the generation of ounterexampleswhen veri�ation fails, traditional depth-�rst searh al-gorithms tend to return very long ounterexamples; heuris-



2 Alex Groe, Willem Visser: Heuristis for Model Cheking Java Programsti searh, when it sueeds, almost always produesmuh more suint ounterexamples.The use of heuristis in model heking has so farmostly foused on using the property to be heked as ameasure for guiding the searh [14,25,32,40,54℄. Unfor-tunately, unlike in more traditional optimization prob-lems in whih heuristis are more ommonly used, it isnot always possible to know during model heking howlose one is to a property being violated. Measurementsof distane to assertion statements, possible unaughtexeptions, or deadloks require a onentration on apartiular error. In a large program with many possi-ble errors, this results in either a searh for eah pos-sible error or a heuristi that may be hopelessly on-ited (for example, if every thread ontains an asser-tion, the heuristi will be trying to move forward oneah thread). In this paper we propose also using thestruture of programs to develop heuristis to guide thesearh. In partiular we show how strutural overageand thread-interdependene an be used as heuristis formodel heking. Furthermore, to illustrate that heuris-tis an also be used during abstration-based modelheking, we propose a heuristi that will redue falsepositive results (errors that are possible in the abstratprogram, but not possible in the onrete), by always�rst searhing for errors in the portion of the state spaewhere no infeasible behaviors exist.We believe one of the most interesting aspets ofheuristi model heking is to learn from previous analy-ses whih heuristi is best-suited to disovering an errorin a program. To illustrate the vision, we show how aheuristi that favors the exeution of a subset of threadsin a program an be alibrated by seleting threads thatformed part of rae-violation (disovered during a pre-vious model heking run)|the reasoning being that arae violation an lead to something more severe (whihit did, sine a deadlok was thus disovered).Finally, we believe that the tester (or developer) us-ing the model heker will in all likelihood know moreabout the overall struture of the program and in whihparts there might be errors lurking than an be disov-ered automatially. Therefore, it is important to allow foruser-de�ned heuristis. We propose an approah wherethe user an de�ne a new heuristi funtion, or take amore light-weight approah and simply annotate the pro-gram with statements that the model heker an useduring analysis to indiate whih parts of the state spaeare most interesting to explore.The ontributions of the paper are:{ A suggested ombination of property-based, stru-tural and user-de�ned heuristis.{ Desription of a set of strutural heuristis that ex-ploit strutural overage, onurreny strutures, andstrutures indued by applying abstrations beforemodel heking.

{ Experimental results for the new heuristis withinthe ontext of error-detetion with Java PathFinder(JPF) [52℄.The paper is organized as follows. Setion 2 desribesheuristi model heking and presents the basi algo-rithms involved. Setion 3 presents the Java PathFindermodel heker and the implementation of heuristi searh.Strutural heuristis are de�ned and desribed in detailin Setion 4, whih also inludes experimental results.Setion 5 presents user-guided heuristis and heuristiannotations. The now onsiderable body of literature onheuristi model heking is desribed in setion 6. Wepresent our onlusions and onsider future work in a�nal setion.2 Heuristi Model ChekingIn heuristi or direted model heking, a state spae isexplored in an order dependent on an evaluation fun-tion for states. This funtion (the heuristi) is usuallyintended to guide the model heker more quikly toan error state. Any resulting ounterexamples will of-ten be shorter than ones produed by the depth-�rstsearh based algorithms traditionally used in expliit-state model hekers. Heuristi model heking is a grow-ing �eld; we disuss the large body of related work inSetion 6.2.1 Searh AlgorithmsA number of di�erent searh algorithms an be ombinedwith heuristis. All share a ommon struture: a �tnessf is omputed for eah state generated by the modelheker, and then the values for f are used to determinewhih states are explored next. The searhes all termi-nate if a goal is reahed (for our purposes, if a propertyviolation is deteted). f 's value will be derived from aheuristi funtion h evaluating the state. Beause manyof the heuristi funtions we use take into aount thepath by whih a state was reahed or other searh-levelinformation, the primary distintion between f and h inthis paper is that f is used to introdue searh-strategyspei� modi�ations to heuristis that are always om-puted in the same fashion for any of these algorithms.The simplest of heuristi searh algorithms is a best-�rst searh, whih uses the heuristi funtion h to om-pute a �tness f in a greedy fashion (Figure 1).The A� algorithm [29℄ is similar, exept that likeDijkstra's shortest paths algorithm, it adds the lengthof the path to S0 to f (f = h(S0) + path-length(S0)rather than f = h(S0)). When the heuristi funtion his admissible, that is, when h(S0) is guaranteed to be lessthan or equal to the length of the shortest path from S0to a goal state, A� is guaranteed to �nd an optimal solu-tion (for purposes of model heking, the shortest oun-



Alex Groe, Willem Visser: Heuristis for Model Cheking Java Programs 3priority queue Q = finitial stategwhile (Q not empty)S = state in Q with best fremove S from Qfor eah suessor state S0 of Sif S0 not already visitedif S0 is the goalterminatef = h(S0)store (S0; f) in QFig. 1. Algorithm for best-�rst searh.queue Q = finitial stategwhile (Q not empty)while (Q not empty)priority queue Q0 = ;remove S from Qfor eah suessor state S0 of Sif S0 not already visitedif S0 is the goalterminatef = h(S0)store (S0; f) in Q0remove all but k best elements from Q0Q = Q0Fig. 2. Algorithm for beam searh.terexample). A� is a ompromise between the guaran-teed optimality of breadth-�rst searh and the eÆienyin returning a solution of best-�rst searh.Beam-searh proeeds even more like a breadth-�rstsearh, but uses the heuristi funtion to disard all butthe k best andidate states at eah depth (Figure 2).Beam-searh, therefore, an only be used to disovererrors|termination of a beam searh without disov-ering an error does not imply orretness of the system.The queue-limiting tehnique used in beam-searhmay also be applied to a best-�rst or A� searh by re-moving the worst state from Q (without expanding itshildren) whenever inserting S0 results in Q ontainingmore than k states. This, again, introdues an inom-pleteness into the model heking run: termination with-out reported errors does not indiate that no errors existin the state spae. However, given that the advantage ofheuristi searh is its ability to quikly disover fairlyshort ounterexamples, in pratie queue-limiting is avery e�etive bug-�nding tati.The experimental results in Setion 4 show the vary-ing utility of the di�erent searh strategies. Beause noneof the heuristis we examine are admissible, A� laks atheoretial optimality, and is generally less eÆient thanbest-�rst searh. The heuristi value is sometimes muhlarger than the path length, in whih ase A� behavesmuh like a best-�rst searh.As far as we are aware, ombining a best-�rst searhwith limitations on the size of the queue for storing states

pending is not disussed or given a name in the litera-ture of heuristi searh. A best-�rst searh with queuelimiting an �nd very deep solutions that might be dif-�ult for a beam-searh to reah unless the queue limitk is very small. In pratie, piking a k for either typeof searh is done by a hand approximation of iterativewidening [50℄.Introdution of queue-limiting to heuristi searh formodel heking raises the possibility of using other in-omplete methods when the fous of model heking ison disovery of errors rather than on veri�ation. Asan example, partial order redution tehniques usuallyrequire a yle hek that may be expensive or over-onservative in the ontext of heuristi searh [15℄. How-ever, one queue-limiting is onsidered, it is natural toexperiment with applying a partial order redution with-out a yle hek. The general approah remains one ofmodel heking rather than testing beause storing ofstates already visited is ruial to obtaining good resultsin our experiene, with one notable exeption (see thedisussion in setions 4.1.2 and 4.2.1).3 Java PathFinderJava PathFinder (JPF) is an expliit state on-the-ymodel heker that takes ompiled Java programs (i.e.byteode lass-�les) and analyzes all paths through theprogram for deadlok, assertion violations and linear timetemporal logi (LTL) properties [52℄. JPF is unique inthat it is built on a ustom-made Java Virtual Mahine(JVM) and therefore does not require any translation toan existing model heker's input notation. The dSPINmodel heker [35℄ that extends SPIN [33℄ to handledynami memory alloation and funtions is the mostlosely related system to the JPF model heker.Java does not support nondeterminism, but in a modelheking ontext it is often important to analyze the be-havior of a program in an aggressive environment whereall possible ations, in any order, must be onsidered.For this reason, methods in a speial Verify lass allowprograms to express nondeterminism. For example, Ver-ify.random(2) will nondeterministially return a valuein the range 0{2, inlusive, whih the model heker anthen trap during exeution and evaluate with all possiblevalues.An important feature of the model heker is the ex-ibility in hoosing the granularity of a transition betweenstates during the analysis of the byteode. Sine themodel heker exeutes byteode instrutions, the most�ne-grained analysis supported is at the level of indi-vidual byteodes. Unfortunately, for large programs thebyteode-level analysis does not sale well, and thereforethe default mode is to analyze the ode on a line-by-linebasis. JPF also supports atomi onstruts (denoted byVerify.beginAtomi() and Verify.endAtomi() alls)



4 Alex Groe, Willem Visser: Heuristis for Model Cheking Java Programsthat the model heker an trap to allow larger ode frag-ments to be grouped into a single transition.The model heker onsists of two basi omponents:State Generator - This inludes the JVM, informationabout sheduling, and the state storage failities re-quired to keep trak of what has been exeuted andwhih states have been visited. The default explo-ration in JPF is to do a depth-�rst generation of thestate spae with an option to limit the searh to amaximum depth. By hanging the sheduling infor-mation, one an hange the way the state spae isgenerated - by default a stak is used to reord thestates to be expanded next, hene the default DFSsearh.Analysis Algorithms - This inludes the algorithms forheking for deadloks, assertion violations and vio-lation of LTL properties. These algorithms work byinstruting the state generation omponent to gen-erate new states, baktrak from old states, and anhek on the state of the JVM by doing API alls(e.g. to hek when a deadlok has been reahed).The heuristis in JPF are implemented in the StateGenerator omponent, sine many of the heuristis re-quire information from the JVM and a natural way to dothe implementation is to adapt the sheduling of whihstate to explore next (e.g. in the trivial ase, for a breath-�rst searh one hanges the stak to a queue). Best-�rst(also used for A�) and beam-searh are straightforwardimplementations of the algorithms listed in Setion 2.1,using priority queues within the sheduler. The heuristisearh apabilities are urrently limited to deadlok andassertion violation heks|none of the heuristi searhalgorithms are partiularly suited to yle detetion, whihis an important part of heking LTL properties. In addi-tion, the limited experimental data on improving ylesin ounterexamples for liveness properties is not enour-aging [16℄.Heuristi searh in JPF also provides a number ofadditional features, inluding:{ users an introdue their own heuristis (interfaingwith the JVM through a well-de�ned API to aessprogram variables et.){ the sum of two heuristis an be used{ the order of analysis of states with the same heuristivalue an be altered{ the number of elements in the priority queue an belimited{ the searh depth an be limited{ dynami annotations in the soure ode an ausethe model heker to inrease or derease heuristivalues or even remove parts of the searh spae4 Strutural HeuristisHeuristis an be used in symboli model heking toredue the bottleneks of image omputation, without

neessarily attempting to zero in on errors; Bloem, Raviand Somenzi thus draw a distintion between property-dependent and system-dependent heuristis [5℄. They notethat only property-dependent heuristis an be appliedto expliit-state model heking, in the sense that explor-ing the state spae in a di�erent order will not removebottleneks in the event that the entire spae must be ex-plored. We suggested a further lassi�ation of property-dependent heuristis into property-spei� heuristis thatrely on features of a partiular property (queue sizes orbloking statements for deadlok, distane in ontrol ordata ow to false valuations for assertions) and stru-tural heuristis that attempt to explore the struture ofa program in a way onduive to �nding more generalerrors [28℄. The heuristi used in FLAVERS would be anexample of the latter [10℄.Previous work on model heking using heuristislargely onentrates on property-spei� heuristis [14,25,32,40,54℄. Common heuristis inlude measuring thelengths of queues, giving preferene to bloking opera-tions [14,40℄, and using a Hamming distane to a goalstate [16,54℄. Heuristis tailored to math a property orderived statially from a ombination of the soure odeand the property (suh as distane to assertions or asearh for overow of a partiular bu�er) are ertainlyuseful. However, when a model heker is applied to alarge onurrent program with many assertions and thepotential for deadloks and unaught exeptions, it isunlear how to pik a property-spei� heuristi. Ratherthan looking for a spei� error, it may be best to tryto explore the struture of the program systematially,looking for any kind of error. As we note below, this isthe motivation behind overage metris in testing.We onsider the following heuristis to be struturalheuristis beause they explore some strutural aspet ofthe program (branhing, thread-interdependene, et.)independent of any spei� property.4.1 Code Coverage HeuristisThe ode overage ahieved during testing is a measureof the adequay of the testing|or, in other words, ofthe quality of the set of test ases. Although it does notdiretly address the orretness of the ode under test,having ahieved high ode overage during testing with-out disovering any errors does inspire more on�denethat the ode is orret. A ase in point is the avionisindustry where software an only be erti�ed for ightif 100% strutural overage, spei�ally modi�ed on-dition/deision overage (MC/DC), is ahieved duringtesting [47℄.In the testing literature there are a vast number ofstrutural ode overage riteria, from simply overingall statements in the program to overing all possibleexeution paths. Here we will fous on branh over-age, whih requires that at every branhing point in theprogram all possible branhes be taken at least one.



Alex Groe, Willem Visser: Heuristis for Model Cheking Java Programs 5In many industries 100% branh overage is onsidereda minimum requirement for test adequay [4℄. On thefae of it, one might wonder why overage during modelheking is of any value, sine model hekers typiallyover all of the state spae of the system under analy-sis, hene by de�nition overing all the struture of theode. However, when model heking Java programs theprograms are often in�nite-state, or have a very large�nite state spae, whih the model heker annot overdue to resoure limitations (typially memory). Calu-lating overage therefore serves the same purpose as dur-ing testing: it shows the adequay of the (partial) modelheking run.As with test overage tools, alulating branh ov-erage during model heking only requires us to keeptrak of whether at eah strutural branhing point alloptions were taken. Sine JPF exeutes byteode state-ments, this means simple extensions need to be intro-dued whenever IF* (related to any if-statement in theode) and TABLESWITCH (related to ase-statements) areexeuted to keep trak of the hoies made. However,unlike with simple branh overage, we also keep trakof how many times eah branh was taken, rather thanjust whether it was taken or not, and onsider overageseparately for eah thread reated during the exeutionof the program. The �rst bene�t of this feature is thatthe model heker an now produe detailed overageinformation when it exhausts memory without �nding aounterexample or searhing the entire state spae. Ad-ditionally, if overage metris are a useful measurementof a set of test ases, it seems plausible that using ov-erage as a heuristi to prioritize the exploration of thestate spae might be useful.One approah to using overage metris in a heuris-ti would be to simply use the perentage of branhesovered (on a per-thread or global basis) as the heuristivalue (we refer to this as the %-overage heuristi). How-ever, this approah does not work well in pratie (seeSetion 4.1.2). Instead, a slightly more omplex heuristiproves far more useful:1. States overing a previously untaken branh reeivethe best heuristi value.2. States that are reahed by not taking a branh reeivethe next best heuristi value.3. States that over a branh already taken are rankedaording to how many times that branh has beentaken (worse sores are assigned to more frequentlytaken branhes).The motivation behind the branh ounting heuristiis to make use of the branhing struture of a programwhile avoiding some of the pitfalls of the more diretheuristi.The %-overage heuristi is likely to fall into loalminima, exploring paths that over a large number ofbranhes but do not in the future inrease overage.The branh ounting heuristi behaves in an essentially

publi stati void main (String [℄ args) fint x = Verify.random (2);int y = Verify.random (2);for (int i = 0; i < x; i++) fSystem.out.println("x,y,i:" + x + "," + y + "," + i);gfor (int j = 0; j < y; j++) fSystem.out.println("x,y,j:" + x + "," + y + "," + j);ggFig. 3. Example program for the branh ounting heuristi.breadth-�rst manner unless a path is atually inreas-ing overage. By default, JPF explores states with thesame heuristi value in a FIFO manner, resulting in abreadth-�rst exploration of a program with no branhhoies. However, if there are branh hoies, the ex-ploration will proeed in a manner that is not stritlybreadth-�rst. Even after the overage eases to inrease,the frontier is muh deeper along paths whih have pre-viously inreased overage, so the searh still advanesexploration of struturally interesting paths over unin-teresting paths.The improved heuristi delays exploration of repet-itive portions of the state spae (those that take thesame branhes repeatedly). Choosing untaken branhes(Rule 1) obviously annot lead to repetitive explorationof a part of a system's ontrol ow. While there is noguarantee of novelty in hoosing transitions not involv-ing branhes (Rule 2), any repetition of these transitionsis presumably guarded by a branh. Thus if a nondeter-minisi hoie determines how many times to exeute aloop, for instane, it will delay exploring through mul-tiple iterations of the loop along ertain paths until ithas searhed further along paths that skip the loop orexeute it only one. The heuristi thus ahieves deeperoverage of the struture and examines possible behav-iors after termination of the loop. If the paths beyond theloop ontinue to be free of branhes or involve previouslyunovered branhes, exploration will ontinue; however,if one of these paths leads to a loop, exploration willreturn to explore further iterations of the �rst loop be-fore exeuting the latter loop more than one, due to thethird rule.In order to larify the onsequenes of this ordering,we present a small example program (Figure 3) and showthe results of using a few di�erent searh strategies toexplore it (Table 1). The �rst olumn for eah searh isthe output (in order). Beside eah output is the ountfor the branhes at that point in exeution: the �rst twonumbers are the true and false branhes for the branhon i < x and the seond and third numbers are the trueand false branhes for j < y. DFS immediately divergesfrom the other two strategies: the model heker initially



6 Alex Groe, Willem Visser: Heuristis for Model Cheking Java ProgramsDFS BFS branhountj:0,1,0 0/2/1/1 i:1,0,0 6/3/2/1 i:1,0,0 1/3/0/1j:0,2,0 0/3/2/2 i:1,1,0 6/3/2/1 j:0,1,0 3/3/1/1j:0,2,1 0/3/3/2 i:1,2,0 6/3/2/1 i:1,1,0 3/3/1/1i:1,0,0 1/3/3/3 i:2,0,0 6/3/2/1 j:0,2,0 6/3/2/1i:1,1,0 2/4/3/4 i:2,1,0 6/3/2/1 i:1,2,0 6/3/2/1j:1,1,0 2/5/4/4 i:2,2,0 6/3/2/1 i:2,0,0 6/3/2/1i:1,2,0 3/5/4/5 j:0,1,0 6/3/2/1 i:2,1,0 6/3/2/1j:1,2,0 3/6/5/5 j:0,2,0 6/3/2/1 i:2,2,0 6/3/2/1j:1,2,1 3/6/6/5 i:2,0,1 9/6/5/3 j:1,1,0 6/5/3/3i:2,0,0 4/6/6/6 i:2,1,1 9/6/5/3 j:0,2,1 6/5/4/3i:2,0,1 5/6/6/6 i:2,2,1 9/6/5/3 j:1,2,0 6/6/5/3i:2,1,0 6/7/6/7 j:0,2,1 9/6/5/3 i:2,0,1 7/6/5/3i:2,1,1 7/7/6/7 j:1,1,0 9/6/5/3 i:2,1,1 8/6/5/3j:2,1,0 7/8/7/7 j:1,2,0 9/6/5/3 i:2,2,1 9/6/5/3i:2,2,0 8/8/7/8 j:1,2,1 9/9/8/6 j:1,2,1 9/6/6/5i:2,2,1 9/8/7/8 j:2,1,0 9/9/8/6 j:2,1,0 9/8/7/6j:2,2,0 9/9/8/8 j:2,2,0 9/9/8/6 j:2,2,0 9/9/8/6j:2,2,1 9/9/9/8 j:2,2,1 9/9/9/8 j:2,2,1 9/9/9/8Table 1. Order of exploration for ode in Figure 3.hooses the pair (0, 0) for (x, y) (whih auses nothingto be printed, as neither for-loop an be entered). Bak-traking then auses the model heker to hoose a se-ond value for y, resulting in the pair (0, 1). As this isa depth-�rst searh, the �rst loop is therefore skippedagain, but the seond (j) loop is entered, printing (0, 1,j = 0). BFS and branh ounting, on the other hand,both �rst show the print statement that an be reahedin the fewest steps, in the �rst (i) loop. However, they di-verge immediately afterwards. The same print statementan also be reahed at the same searh depth with y'svalue being 1. As the branh ounting heuristi alwaysprefers a path with an unexplored branh, it �rst showsthe exeution where the �rst loop is never exeuted butthe seond is exeuted one. At this point, eah branhin the loops has been explored by branh ounting (aswith DFS, the ase where both branhes are not takenis invisible).Additionally, it is important to note that while BFSand branhount both display x,y,i:1,0,0 �rst, thebranh overage ounts are quite di�erent. In the BFS,all of the possible ombinations for x and y are gener-ated and the �rst for loop is exeuted with eah possibleombination. There are nine possible hoies for x andy, 6 of whih ause the true branh to be taken and 3 ofwhih ause the false branh to be taken. These have allbeen exeuted before the �rst print: thus the true branhhas been overed 6 times and the false branh 3 times.In ontrast, for branhount, the print statement is ov-ered when the true branh has only been exeuted one.BFS, therefore, results in a very stati set of overages,with only 3 total hanges to the overage ounts for eahbranh. For branhount, the overage numbers hangea total of 12 times. While DFS hanges overage be-tween every two printings, it does so in a non-methodial

manner that is weighted towards the false branhes|itinreases the ounts, but makes no direted e�ort to in-rease overage. Thus while both BFS and branhounthave overed all branhes by the seond printing, DFSdoes not do so until the fourth printing. The behaviorof the branhount heuristi an be seen as a mixture ofthe behaviors of BFS and DFS that is sensitive to thebranhing struture of the program.In addition to avoiding loal minima, this heuristihas the advantage of being more sensitive to data valuesthan the overage measures traditionally used in test-ing. Beause the heuristi ounts the exeutions of eahbranh, it is inuened by data values that determinehow many times a for-loop is exeuted in a manner be-yond the simple 0-1 sensitivity of all-or-nothing overage.4.1.1 Variations on the Branh Counting Heuristi.A number of options an modify the basi strategy:{ Counts may be taken globally (over the entire statespae explored) or only for the path by whih a par-tiular state is reahed. This allows us to examineeither ombinations of hoies along eah path orto try to maximize branh hoies over the entiresearh when the ordering along paths is less rele-vant. In priniple, the path-based approah shouldbe useful when taking ertain branhes in a parti-ular ombination in an exeution is responsible forerrors. Global ounts will be more useful when sim-ply exerising all of the branhes is a better way to�nd an error. An instane of the latter would be aprogram in whih one large nondeterministi hoieat the beginning results in di�erent lasses of shallowexeutions, one of whih leads to an error state.{ The branh ount may be allowed to persist|if astate is reahed without overing any branhes, thelast branh ount on the path by whih that state wasreahed may be used instead of giving the state theseond best heuristi value. This allows us to inreasethe tendeny to explore paths that have improvedoverage without being quite as prone to falling intoloal minima as the %-overage heuristi.{ The ounts over a path an be summed to redue thesearh's sensitivity to individual branh hoies.{ These various methods an also be applied to ountstaken on exeutions of eah individual byteode in-strution, rather than only of branhes. This is equiv-alent to the idea of statement overage in traditionaltesting.The pratial e�et of this lass of heuristi is to in-rease exploration of portions of the state spae in whihnondeterministi hoies or thread interleavings have re-sulted in the possibility of previously unexplored or less-explored branhes being taken.In pratie, these variations behaved very muh likethe basi branh ounting heuristi in our experimental



Alex Groe, Willem Visser: Heuristis for Model Cheking Java Programs 7results. For persistent and summing ounts, in fat, theresults were idential to the standard searh in almostall ases, and were thus omitted from the experimentalresults. In theory, all of the variations an produe signif-iantly di�erent results on real programs, but in pratieonly global vs. path had any observable impat.Note also that the branh ounting heuristis anbe used in dynami test ase generation [39℄ by usingthe heuristi funtion to optimize the seletion of testases|for example, by only piking ases in whih theoverage inreases.4.1.2 Experimental ResultsWe will refer to a number of heuristis (Table 2) andsearh strategies (Table 3) when presenting experimentalresults. In addition to these basi heuristis, we indiatewhether a heuristi is measured over paths or all statesby appending (path) or (global) when that is an option.The DEOS real-time operating system developed byHoneywell enables Integrated Modular Avionis (IMA)and is urrently used within ertain small business air-raft to shedule time-ritial software tasks. During itsdevelopment a routine ode inspetion led to the unov-ering of a subtle error in the time-partitioning that ouldallow tasks to be starved of CPU time - a sequene ofunantiipated API alls made near time-period bound-aries would trigger the error. Interestingly, although avion-is software needs to be tested to a very high degree(100% MC/DC overage) to be erti�ed for ight, thiserror was not unovered during testing. Model hekingwas used to redisover this error, by using a translationto PROMELA (the input language of the SPIN modelheker) [44℄. Later a Java translation of the originalC++ ode was used to detet the error. Both versionsuse an abstration to �nd the error (see the disussionin setion 4.4). The results (Table 4) are from a versionof the Java ode that does not abstrat away an in�nite-state ounter|a more straightforward translation of theoriginal C++ ode into Java.The %-overage heuristi does indeed appear to eas-ily beome trapped in loal minima, and, as it is notadmissible, using an A� searh will not neessarily help.For omparison to results not using heuristis, here andbelow we also give results for breadth-�rst searh (BFS),depth-�rst searh (DFS) and depth-�rst searhes lim-ited to a ertain maximum depth. For essentially in�nitestate systems (suh as this version of DEOS), limitingthe depth is the only pratial way to use DFS, but asan be seen, �nding the proper depth an be diÆult|and large depths may result in extremely long ounterex-amples. Using a purely random heuristi does, in fat,�nd a ounterexample for DEOS|however, the oun-terexample is onsiderably longer and takes more timeand memory to produe than with the overage heuris-tis.

We also applied the suessful heuristis to the DEOSsystem with the storing of visited states turned o� (per-forming testing or simulation rather than model hek-ing, essentially). Without state storage, these heuris-tis failed to �nd a ounterexample before exhaustingmemory|the queue of states to explore beomes toolarge and exhausts the memory.4.2 Thread Interleaving HeuristisA di�erent kind of strutural heuristi is based on max-imizing thread interleavings. Testing, in whih generallythe sheduler annot be ontrolled diretly, often missessubtle rae onditions or deadloks beause they rely onunlikely thread sheduling. One way to expose onur-reny errors is to reward \demoni" sheduling by as-signing better heuristi values to states reahed by pathsinvolving more swithing of threads. In this ase, thestruture we attempt to explore is the dependeny ofthe threads on preise ordering. If a non-loked variableis aessed in a thread, for instane, and another threadan also aess that variable (leading to a rae ondi-tion that an result in a deadlok or assertion violation),that path will be preferred to one in whih the aessingthread ontinues onwards, perhaps esaping the e�etsof the rae ondition by reading the just-altered value.This heuristi is alulated by keeping a (possibly lim-ited in size) history of the threads sheduled on eahpath:{ At eah step of exeution append the thread just ex-euted to a thread history.{ Pass through this history, making the heuristi valuethat will be returned worse eah time the thread justexeuted appears in the history by a value propor-tional to:1. how far bak in the history that exeution is and2. the urrent number of live threadsFigure 4 presents a small sample program and Table5 shows how the interleaving heuristi a�ets the orderof exploration of its state spae by the model heker. Aswith branh ounting, DFS is immediately distinguish-able from the other heuristis, as the model heker ex-eutes Thread #1 until this is no longer possible (afterwhih we observe baktraking behavior). BFS and theinterleaving heuristi both behave very similarly at �rst;as with the branh ounting heuristi, the basi approahis to imitate a breadth-�rst exploration until informationis available to modify this behavior. Figure 5 shows thebeginning of the possible interleavings of the print state-ments for the ode. There are only two possible printstatements at the earliest depth at whih a print state-ment an be enountered. States with the same heuristivalue are ordered by the reation order of the threads. Atthe seond depth at whih print statements an be en-ountered, there are four hoies, but the thread history



8 Alex Groe, Willem Visser: Heuristis for Model Cheking Java ProgramsHeuristi De�nitionbranhount The basi branh ounting heuristi. Has multiple variations, suh as pathor global overage.byteode Computed in the same manner as the branhount heuristi, but applied toall byteode instrutions; also omes in path and global variations.%-overage Measures the perentage of branhes overed. States with higher overagereeive better values.most-bloked Measures the number of bloked threads. More bloked threads resultsin better values.interleaving Measures the amount of interleaving of threads on paths. See Setion 4.2.prefer-threads Uses heuristi value to prefer exeution of a given set of threads.hoose-free Uses heuristi value to avoid abstration-introdued nondeterminism.random Uses a randomly assigned heuristi value. Results shown are best of a seriesof runs. Table 2. Heuristis.Searh strategy De�nitionBFS A breadth-�rst searh.DFS A depth-�rst searh. (depth n) indiates that stak depth is limited to n.best Best-�rst searh, (with possible queue limit k)A� An A� searh (with possible queue limit k)beam Beam searh (with a given k)Table 3. Searh strategies.Searh Heuristi Time(s) Mem(MB) States Length Max Depthbest branhount (path) 60 92 2,701 136 139A� branhount (path) 59 90 2,712 136 139best branhount (global) 60 91 2,701 136 139A� branhount (global) 59 92 2,712 136 139best byteode (path) - FAILS 9,032 - 168A� byteode (path) - FAILS 10,073 - 139best byteode (global) 62 88 2,195 136 137A� byteode (global) 63 94 2,383 136 137best %-overage (path) - FAILS 20,215 - 334A� %-overage (path) - FAILS 18,141 - 134best %-overage (global) - FAILS 20,213 - 334best random 162 240 8,057 334 360BFS - - FAILS 18,054 - 135DFS - - FAILS 14,678 - 14,678DFS (depth 500) - 6,782 383 392,479 455 500DFS (depth 1000) - 2,222 196 146,949 987 1,000DFS (depth 4000) - 171 270 8,481 3,997 4,000Results with state storage turned o�best branhount (path) - FAILS 15,964 - 125A� branhount (path) - FAILS 15,962 - 125best branhount (global) - FAILS 15,964 - 125A� branhount (global) - FAILS 15,962 - 125Table 4. Experimental results for the DEOS system.All results obtained on a 1.4 GHz Athlon with JPF limited to 512Mb. Time(s) is in seonds and Mem(MB) is inmegabytes. FAILS indiates failure due to running out of memory. The Length olumn reports the length of theounterexample (if one is found). The Max Depth olumn reports the length of the longest path explored (the maximumstak depth in the depth-�rst ase).



Alex Groe, Willem Visser: Heuristis for Model Cheking Java Programs 9lass MyThread extends Thread fpubli stati int s = 0;private int tid;MyThread (int i) ftid = i;gpubli void run()fSystem.out.println ("Thread #" + tid + ", A");System.out.println ("Thread #" + tid + ", B");System.out.println ("Thread #" + tid + ", C");gglass IntExample fpubli stati void main (String [℄ args) fVerify.beginAtomi ();MyThread Thread1 = new MyThread(1);MyThread Thread2 = new MyThread(2);Thread1.start (); Thread2.start ();Verify.endAtomi ();gg Fig. 4. Example program for interleaving heuristi.
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Depth 2

Depth 3

Depth 4... .            .            .Fig. 5. Thread interleaving for ode in Figure 4.is too small to ativate the interleaving heuristi. It is atthe third depth (indiated by the line in Table 5) thatwe see divergene between the BFS and the interleavingheuristi. 1C, the �rst print statement at this depth inthe BFS, results from a very non-interleaved exeutionsequene in whih thread #1 is hosen three times in arow. 1B, the interleaving hoie, results from exeutingthread #1, then thread #2, then thread #1 again. 2A,the next BFS hoie, must result from a path whih be-gins by exeuting thread #1 twie in a row, while theinterleaving heuristi auses 2B to appear �rst, as it anbe reahed by exeuting thread #2, then thread #1, andthen thread #2 again. After this, the exeution ordersgrow more divergent as more thread history is aumu-lated. The interleaving heuristi not only rearranges theorder within a partiular depth, it abandons breadth �rstsearh ompletely. A 2A exeution from depth 4 appearsbefore the 1A exeution for depth 3.4.2.1 Experimental ResultsDuring May 1999 the Deep-Spae 1 spaeraft ran a setof experiments whereby the spaeraft was under theontrol of an AI-based system alled the Remote Agent.

DFS BFS interleavingThread #1, A Thread #1, A Thread #1, AThread #1, B Thread #2, A Thread #2, AThread #1, C Thread #1, B Thread #1, BThread #2, A Thread #2, A Thread #2, AThread #2, B Thread #1, A Thread #1, AThread #2, C Thread #2, B Thread #2, BThread #2, A Thread #1, C Thread #1, BThread #1, C Thread #2, A Thread #2, BThread #2, B Thread #1, B Thread #1, BThread #1, C Thread #2, B Thread #2, BThread #2, C Thread #1, B Thread #1, CThread #1, C Thread #2, B Thread #2, AThread #2, A Thread #1, A Thread #2, AThread #1, B Thread #2, C Thread #2, BThread #2, B Thread #2, A Thread #2, CThread #1, B Thread #1, C Thread #1, AThread #2, C Thread #2, B Thread #2, CThread #1, B Thread #1, B Thread #1, AThread #2, A Thread #2, C Thread #1, BThread #1, A Thread #1, C Thread #1, CThread #1, B Thread #2, B Thread #1, CThread #1, C Thread #1, B Thread #2, BThread #2, B Thread #2, C Thread #1, BThread #2, C Thread #1, A Thread #2, CThread #2, B Thread #2, B Thread #1, BThread #1, C Thread #1, C Thread #2, CThread #2, C Thread #2, C Thread #1, BThread #1, C Thread #1, B Thread #1, CThread #2, B Thread #2, B Thread #1, CThread #1, B Thread #1, C Thread #2, BThread #2, C Thread #2, C Thread #2, BThread #1, B Thread #1, B Thread #2, CThread #2, B Thread #2, C Thread #1, CThread #1, A Thread #1, C Thread #2, CThread #2, C Thread #2, C Thread #1, CThread #1, A Thread #1, C Thread #2, CTable 5. Order of exploration for ode in Figure 4.Unfortunately, during one of these experiments the soft-ware went into a deadlok state, and had to be restartedfrom Earth. The ause of the error at the time was un-known, but after some study, in whih the most likelyomponents to have aused the error were identi�ed, theerror was found by applying model heking to a Javaversion of the ode|the error was due to a missing riti-al setion ausing a rae violation to our under ertainthread interleavings introduing a deadlok [30℄. The re-sults (Table 6) use a version of the ode that is faithfulto the original system, as it also inludes parts of thesystem not involved in the deadlok.Experiments indiate that whileA� and beam-searhan ertainly perform well at times, they generally do notperform as well as best-�rst searh. The heuristis inves-tigated are not admissible, so the optimality advantagesof A� do not ome into play. In general, both appearto require more judiious hoie of queue-limits than isneessary with best-�rst searh, at least in this example.



10 Alex Groe, Willem Visser: Heuristis for Model Cheking Java ProgramsSearh Heuristi Time(s) Mem(MB) States Length Max Depthbest (k = 40) branhount (path) - FAILS 1,765,009 - 12,092best (k = 160) branhount (path) - FAILS 1,506,725 - 5,885best (k = 1000) branhount (path) 132 290 845,263 136 136best (k = 40) branhount (global) - FAILS 1,758,416 - 12,077best (k = 160) branhount (global) - FAILS 1,483,827 - 1,409best (k = 1000) branhount (global) - FAILS 1,509,810 - 327best random - FAILS 55,940 - 472BFS - - FAILS 623,566 - 60DFS - - FAILS 267,357 - 267,357DFS (depth 500) - 43 54 116,071 500 500DFS (depth 1000) - 44 64 117,235 1000 1000DFS (depth 4000) - 47 72 122,513 4000 4000best interleaving - FAILS 378,068 - 81best (k = 5) interleaving 15 17 38,449 913 913best (k = 40) interleaving 116 184 431,752 869 869best (k = 160) interleaving 908 501 1,287,984 869 870best (k = 1000) interleaving - FAILS 745,788 - 177A� interleaving - FAILS 369,166 - 81A� (k = 5) interleaving 13 19 43,172 912 912A� (k = 40) interleaving 77 129 306,285 865 867A� (k = 160) interleaving - FAILS 1,309,561 - 789A� (k = 1000) interleaving - FAILS 1,836,675 - 273beam (k = 5) interleaving 14 16 35,514 927 927beam (k = 40) interleaving 91 113 238,945 924 924beam (k = 160) interleaving 386 418 1,025,595 898 898beam (k = 1000) interleaving - FAILS 1,604,940 - 365best most-bloked 7 33 7,537 158 169best (k = 5) most-bloked - FAILS 922,433 - 27,628best (k = 40) most-bloked - FAILS 913,946 - 4,923best (k = 160) most-bloked - FAILS 918,575 - 1,177best (k = 1000) most-bloked 6 10 7,537 158 169A� most-bloked - FAILS 631,274 - 61A� (k = 5) most-bloked - FAILS 935,796 - 16,189A� (k = 40) most-bloked - FAILS 960,259 - 1,907A� (k = 160) most-bloked - FAILS 989,513 - 555A� (k = 1000) most-bloked - FAILS 1,138,920 - 165best prefer-threads - FAILS 548,157 - 61best (k = 5) prefer-threads 3 3 3,632 121 121best (k = 40) prefer-threads 6 12 23,754 121 121best (k = 160) prefer-threads 16 39 81,162 121 121best (k = 1000) prefer-threads 80 201 450,035 121 121Table 6. Experimental results for the Remote Agent system.Finally, for the dining philosophers (Table 7), weshow that the interleaving heuristi an sale to quitelarge numbers of threads. While DFS fails to unoverounterexamples even for small problem sizes, the inter-leaving heuristi an produe short ounterexamples forup to 64 threads. The most-bloked heuristi, designedto detet deadloks, generally returns larger ounterex-amples (in the ase of size 8 and queue limit 5, larger by afator of over a thousand) after a longer time than the in-terleaving heuristi. Even more importantly, it does notsale well to larger numbers of threads. We only report,for eah number of philosopher threads, the results forthose searhes that were suessful in the next smallerversion of the problem. Results not shown indiate that,

in fat, failed searhes do not tend to sueed for largersizes.The key di�erene in approah between using a property-spei� heuristi and a strutural heuristi an be seenin the dining philosophers example where we searh forthe well-known deadlok senario. When inreasing thenumber of philosophers high enough (for example to 16)it beomes impossible for an expliit-state model hekerto try all the possible ombinations of ations to getto the deadlok and heuristis (or luk) are required. Aproperty-spei� heuristi appliable here is to try andmaximize the number of bloked threads (most-blokedheuristi from Table 2), sine if all threads are blokedwe have a deadlok in a Java program. Whereas a stru-



Alex Groe, Willem Visser: Heuristis for Model Cheking Java Programs 11Searh Heuristi Size Time(s) Mem(MB) States Length Max Depthbest branhount (path) 8 - FAILS 374,152 - 41best random 8 - FAILS 218,500 - 86BFS - 8 - FAILS 436,068 - 13DFS - 8 - FAILS 398,906 - 384,286DFS (depth 100) - 8 - FAILS 1,357,596 - 100DFS (depth 500) - 8 - FAILS 1,354,747 - 500DFS (depth 1000) - 8 - FAILS 1,345,289 - 1,000DFS (depth 4000) - 8 - FAILS 1,348,398 - 4,000best most-bloked 8 - FAILS 310,317 - 285best (k = 5) most-bloked 8 17,259 378 891,177 78,353 78,353best (k = 40) most-bloked 8 10 7 13,767 273 273best (k = 160) most-bloked 8 10 12 25,023 172 172best (k = 1000) most-bloked 8 46 59 123,640 254 278best interleaving 8 - FAILS 487,942 - 16best (k = 5) interleaving 8 2 1 1,719 66 66best (k = 40) interleaving 8 5 5 16,569 66 66best (k = 160) interleaving 8 12 27 62,616 66 66best (k = 1000) interleaving 8 60 137 354,552 67 67best (k = 5) most-bloked 16 - FAILS 802,526 - 36,443best (k = 40) most-bloked 16 38 69 101,576 1,008 1,008best (k = 160) most-bloked 16 - FAILS 799,453 - 2,071best (k = 1000) most-bloked 16 - FAILS 791,073 - 702best (k = 5) interleaving 16 4 5 6,703 129 129best (k = 40) interleaving 16 16 45 69,987 131 131best (k = 160) interleaving 16 60 207 290,637 131 132best (k = 1000) interleaving 16 - FAILS 858,818 - 41best (k = 40) most-bloked 32 - FAILS 463,414 - 2,251best (k = 5) interleaving 32 11 32 25,344 257 257best (k = 40) interleaving 32 - FAILS 472,022 - 775best (k = 160) interleaving 32 - FAILS 494,043 - 86best (k = 5) interleaving 64 59 206 101,196 514 514Table 7. Experimental results for dining philosophers.tural heuristi may be to observe that we are dealinghere with a highly onurrent program|hene it maybe argued that any error in it may well be related to anunexpeted interleaving|hene we use the heuristi tofavor inreased interleaving during the searh (interleav-ing heuristi from Table 2). Although the results are byno means onlusive, it is still worth noting that for thisspei� example the strutural heuristi performs muhbetter than the property-spei� heuristi.For the dining philosophers and Remote Agent ex-ample we also performed the experiment of turning o�state storage. For the interleaving heuristi, results wereessentially unhanged (minor variations in the length ofounterexamples and number of states searhed). We be-lieve that this is beause to return to a previously visitedstate in eah ase requires an ation sequene that willnot be given a good heuristi value by the interleavingheuristi (for example in the dining philosophers, alter-nating piking up and dropping of forks by the samethreads). For the most-bloked heuristi, however, su-essful searhes beome unsuessful|removal of statestorage introdues the possibility of non-termination intothe searh. For example, the most-bloked heuristi with-

out state storage may not even terminate, in some ases(imagine a senario in whih deadlok is impossible buta ertain thread an aquire a lok, bloking all otherthreads|it is then fored to release the lok as the onlythread that an exeute, but the heuristi will then auseit to aquire the lok again, returning to the previousstate).
Godefroid and Khurshid apply their geneti algo-rithm tehniques to a very similar implementation of thedining philosophers (written in C rather than Java) [25℄.They seed their geneti searh randomly on a versionwith 17 running threads, reporting a 50% suess rateand average searh time of 177 seonds (on a slower ma-hine than we used). The results suggest that the dif-ferenes may be as muh a result of the heuristis used(something like most-bloked vs. the interleaving heuris-ti) as the geneti searh itself. Appliation of struturalheuristis in di�erent searh frameworks is an interestingavenue for future study.



12 Alex Groe, Willem Visser: Heuristis for Model Cheking Java Programs4.3 The Thread Preferene HeuristiThe interleaving heuristi rewards ontext-swithing; if aprogram has a large number of threads that are enabled,in an interleaving-guided searh those threads will all beexeuted often. However, a few threads in a programmaybe suspeted to harbor an error. Instead of rewardingontext-swithing (or trying to blok threads that maybe unrelated to the error), we an improve the heuristivalue of transitions that involve exeution of only thesethreads.The Remote Agent example inludes a salable num-ber of threads that are not involved in the atual er-ror. If the size of this irrelevant part of the state spaeis inreased, the various searhes listed above performmuh more poorly, and in many ases annot �nd theerror. The existene of the prefer-threads heuristi al-lows a new approah to hunting onurreny errors inJPF. JPF inorporates a version of the Eraser rae de-tetion algorithm [49℄. First, the model heker is runin rae detetion mode with a small queue limit (300worked well) and some heuristi (a BFS suÆed in ourexperiments). This searh does not �nd the error, butreports a number of potential rae onditions. Allowingthe rae detetion to run for 3 minutes (using 389MB ofmemory) reveals that the Exeutive and Planner threadshave unproteted write aesses to a �eld. The threadsinvolved in the potential rae onditions are then used toguide a thread-preferene searh with a similarly smallqueue, and a ounterexample is quikly deteted. Thisapproah saled to larger versions of the Remote Agentthan other heuristis ould handle (Table 8). The �rstblok of results are for a version in whih the irrelevantportion of the state spae is doubled with respet to theversion in Table 6, and the size is again doubled in eahblok (with only the searhes sueeding for the last sizeshown).This is a di�erent avor of strutural heuristi thanthose presented previously. The branh ounting and in-terleaving heuristis are not only not property-spei�,but do not rely on spei� knowledge of the program'sbehavior beyond what an be observed by the modelheker (whih branhes are taken, whih threads are en-abled) during exeution of the program. Preferring er-tain threads assumes knowledge about the behavior ofthe program; while it is not a property-spei� heuristi,it fouses on a part of the system's struture guided byknowledge of what parts of the system are \interesting."However, our strategy with the Remote Agent demon-strates that this knowledge itself may be automatiallyextratable by the model heker. The experimental re-sults show that suh additional knowledge an, as wouldbe expeted, aid a guided searh onsiderably.

4.4 The Choose-free HeuristiAbstration based on over-approximations of the sys-tem behavior is a popular tehnique for reduing thesize of the state spae of a system to allow more eÆientmodel heking [8,12,26,53℄. JPF supports two formsof over-approximation: prediate abstration [53℄ andtype-based abstrations (via the BANDERA tool) [12℄.However, over-approximation is not well suited for error-detetion, sine the additional behaviors introdued bythe abstration an lead to spurious errors that are notpresent in the original. Eliminating spurious errors is anative area of researh within the model heking om-munity [3,7,31,43,48℄.JPF uses a novel tehnique for the elimination ofspurious errors alled hoose-free searh [43℄. This teh-nique is based on the fat that all over-approximationsintrodue nondeterministi hoies in the abstrat pro-gram that were not present in the original. Therefore,a hoose-free searh �rst searhes the part of the statespae that doesn't ontain any nondeterministi hoiesdue to abstration. If an error is found in this so-alledhoose-free portion of the state spae then it is also an er-ror in the original program. Although this tehnique mayseem almost naive, it has been shown to work remark-ably well in pratie [12,43℄. The �rst implementation ofthis tehnique was by only searhing the hoose-free statespae, but the urrent implementation uses a heuristithat gives the best heuristi values to the states withthe fewest nondeterministi hoie statements enabled,i.e. allowing the hoose-free state spae to be searhed�rst but ontinuing to the rest of the state spae oth-erwise (this also allows hoose-free to be ombined withother heuristis).The DEOS example an be abstrated by using bothprediate abstration [53℄ and type-based abstration [12℄.The prediate abstration of DEOS is a preise abstra-tion, i.e. it does not introdue any new behaviors notpresent in the original, hene we fous here on the type-based abstration|spei�ally we use a Range abstra-tion (allowing the values 0 and 1 to be onrete and allvalues 2 and above to be represented by one abstratvalue) to the appropriate variable [12℄. When using thehoose-free heuristi it is disovered that for this Rangeabstration the heuristi searh reports a hoose-free er-ror of length 26 in 20 seonds. The error path is shorterthan in the experimental results reported earlier beausethose results are for a version of DEOS in whih time isnot abstrated (and thus arithmeti is not redued tooperations on the range-abstrated values).These heuristis for �nding feasible ounterexamplesduring abstration an be seen as an on-the-y under-approximation of an over-approximation (from the ab-stration) of the system behavior. The only other heuris-ti that we are aware of that falls into a similar ategoryis the one for reduing infeasible exeution sequenesin the FLAVERS tool [10℄. This heuristi di�ers from



Alex Groe, Willem Visser: Heuristis for Model Cheking Java Programs 13Searh Heuristi Time(s) Mem(MB) States Length Max DepthSize = 10 (Table 6 is Size = 5 results)best (k = 1000) branhount (path) - FAILS 1,193,730 - 230DFS (depth 500) - - FAILS 599,431 - 500DFS (depth 1000) - - FAILS 598,487 - 1000DFS (depth 4000) - - FAILS 590,259 - 4000best (k = 5) interleaving 116 161 243,910 2,870 2,870best (k = 40) interleaving - FAILS 908,353 - 1,755best (k = 160) interleaving - FAILS 1,146,152 - 809A� (k = 5) interleaving 112 158 241,999 2,867 2,867A� (k = 40) interleaving - FAILS 892,071 - 1,764beam (k = 5) interleaving 116 151 209,370 2,888 2,888beam (k = 40) interleaving - FAILS 875,752 - 1,927beam (k = 160) interleaving - FAILS 1,066,711 - 902best most-bloked 25 186 23,528 269 280best (k = 1000) most-bloked 15 31 24,528 269 280best (k = 5) prefer-threads 4 8 11,137 201 201best (k = 40) prefer-threads 16 49 79,354 201 201best (k = 160) prefer-threads 51 169 290,932 201 201best (k = 1000) prefer-threads - FAILS 995,617 - 149Size = 20best (k = 5) interleaving - FAILS 639,748 - 5,321A� (k = 5) interleaving - FAILS 635,067 - 5,031beam (k = 5) interleaving - FAILS 611,495 - 5,797best most-bloked - FAILS 41,991 - 497best (k = 1000) most-bloked - FAILS 402,007 - 524best (k = 5) prefer-threads 9 38 38,147 361 361best (k = 40) prefer-threads 55 272 286,554 361 361best (k = 160) prefer-threads - FAILS 680,990 - 279Size = 40best (k = 5) prefer-threads 38 212 140,167 681 681best (k = 40) prefer-threads - FAILS 472,708 - 445Table 8. Larger versions of the Remote Agent.those disussed previously in that it relies on the stru-ture of the abstration applied to a program rather thanon the branhing or thread-interation struture of theprogram.5 User-Guided Searhes5.1 User-De�ned HeuristisTraditionally, heuristis are often very problem-spei�.Previous disussion throughout this paper has been ofheuristis of general utility, but JPF allows for very spe-i� heuristis as well. Users may write their own heuris-tis in Java. Consider a program with a lass Main with astati �eld buffer, itself an objet of a lass with integer�elds urrent and apaity. Figure 6 shows the odefor a heuristi returning either (apaity � urrent),or a default value (de�ned in the UserHeuristi lass) ifthe Main.buffer �eld hasn't been initialized:Strutural heuristis and property-spei� heuristisof very general utility (suh as the most-bloked heuris-ti) are provided as built-in features of the model heker,

publi int heuristiValue() fReferene m =getSystemState().getClass("Main");if (m != null) fReferene b =m.getObjetField("buffer");if (b != null) fint urrent =b.getIntField("urrent");int apaity =b.getIntField("apaity");if (urrent > apaity)return 0;return (apaity-urrent);ggreturn defaultValue;g Fig. 6. Example of a user-de�ned heuristi.but the range of property-spei� (or experimental stru-tural heuristis) is so large that it is essential to allowusers to also raft their own heuristis.



14 Alex Groe, Willem Visser: Heuristis for Model Cheking Java ProgramsMethodVerify.interesting (boolean b)If b evaluates to true:heuristi value for state in whih the all appears is equalto the best possible heuristi value.Verify.boring (boolean b)If b evaluates to true:heuristi value for state in whih the all appears is onestep worse than the worst heuristi value previouslyomputed in the model heking run.Verify.ignoreIf (boolean b)If b evaluates to true:the state in whih the all appears is not explored by themodel heker. This applies even to non-heuristi searhes.Note that this potentially introdues an inompletenessinto the searh and an be dangerous if used unwisely.Table 9. Speial methods for program guided searh.publi stati void main (String [℄ args) fint x = Verify.random(10);int y = 0;Verify.interesting (x > 5);Verify.boring (x < 5);if (x > 5)y = 100;if (x < 5)y = 50;System.out.println ("y = " + y);g Fig. 7. Example program for program guided searh.Calls Ordernone 50, 100, 50, 100, 50, 100, 50, 100, 50, 100, 0both 100, 50, 100, 100, 100, 100, 0, 50, 50, 50, 50Table 10. Searh ordering for example in Figure 7.5.2 Program-Guided SearhAmore lightweight approah than introduing new heuris-tis into the model heker itself is to introdue alls thatare trapped by the model heker and used to modify thebehavior of whatever heuristi is being used. JPF pro-vides three methods for this purpose (Table 9).These methods an be used to �ne tune the behaviorof the various heuristis provided by JPF in a dynamifashion, based on values omputed by the program beingmodel heked at run time. The heuristi alteration fromVerify.interesting and Verify.boring only appliesto one state, but may have a signi�ant e�et on thesearh nonetheless. For example, if the branh ountingheuristi is used and the suessor to the interesting stateovers a new branh, it (and possibly its suessors) willbe explored before the other states that would otherwisehave had the same value as the interesting state.

As an example, onsider the program in Figure 7.Model heking the program using the branh ount-ing heuristi alone auses the model heker to alternatebetween exeutions outputting 50 and 100 beause thiskeeps the ounts on the branhes even. Introduing allsto Verify.interesting and Verify.boring auses the�rst value printed to be 100, as the suessors to the\boring" states are plaed later in the queue. A single50 then appears, as the branh ounting heuristi's Rule1 fores the �rst overage of a branh to always have thebest heuristi value. The other hoies in whih (x < 5)are all delayed until after the neutral (x == 5) ase.Verify.ignoreIf an be used as a more preise toolfor limiting the searh queue, or in a non-heuristi fash-ion to prune parts of the state spae in whih it anbe shown (via stati analysis or manual inspetion) thaterrors annot our. The latter approah is used to ter-minate exploration of infeasible paths when using JPFfor symboli exeution [38℄. Use of Verify.ignoreIf re-quires onsiderable aution, as it an result in the modelheker returning \true" for properties that do not hold.It is analogous to the assume diretive available in manyother model hekers.6 Related WorkA wide body of work now exists on the topi of modelheking software in real programming languages [3,6,11,24,31,34,35,41,52℄. Tehniques range from prediateabstration based approahes [3,6,31℄ to more diret ex-plorations of exeuting ode without a separate model [24,41,52℄.Early work in heuristi model heking applied best-�rst searh to model heking for protool validation toahieve signi�ant gains over depth-�rst searh [40℄. Pa-geot and Jard [42℄ disussed using heuristis to guidememory-less searh (also known as guided simulation orrandom walk), and Holzmann noted that this ould alsobe applied to a (potentially) partial searh as in expliit-state model heking [32℄. Edelkamp, Lafuente, and Leueintrodued heuristi searh into the SPIN expliit-statemodel heker [14℄, suggested a use of heuristi modelheking to redue the size of ounterexamples [16℄, andapplied the partial-order redution to heuristi searh [15,13℄. This work provides a useful ontrast to this paper,in that it onentrates on property and goal-diretedheuristis that are sometimes admissible.We �rst applied heuristi model heking to Java pro-grams [27℄ and introdued a new lass of heuristis forsoftware model heking [28℄. Our previous work andthis paper onentrate on strutural heuristis over themore studied property and goal-state direted heuristis.Edelkamp and Mehler examined the use of JPF's heuris-ti framework with goal-direted heuristis, and provideuseful ommentary on and omparisons with our stru-tural approah [17℄. Godefroid and Khurshid applied ge-



Alex Groe, Willem Visser: Heuristis for Model Cheking Java Programs 15neti algorithm tehniques rather than the more basiheuristi searhes, using heuristis measuring outgoingtransitions from a state (similar to the most-blokedheuristi|see Table 2), rewarding evaluations of asser-tions, and measuring messages exhanged in a seurityprotool [25℄. Musuvathi et al. briey mention some su-ess in using heuristis to guide a diret exploration ofC and C++ ode (in a manner similar to that in whihJPF explores Java ode) [41℄.Yang and Dill used a best-�rst searh with BDD-based model heking within the Mur� tool [54℄. Bloem,Ravi and Somenzi used heuristis to redue the bottle-neks of image omputation in symboli model hek-ing [5℄. OBDD-based heuristi searh has also been usedin AI planning problems losely related to model hek-ing. Edelkamp and Re�el [18℄ originally proposed anOBDD-based version of the A� algorithm. Jensen, Bryantand Veloso have developed a signi�antly improved BDD-based version of A� [37,36℄.Heuristis have also been used for generating testases [45,51℄, and model hekers have been used fortest ase generation [1,2,19,20,23,46℄. Friedman et. al.used a Coverage First Searh (CFS) related to struturalheuristis to generate test suites [21℄. Ganai and Azizused overage-based tehniques to guide a state-spaesearh for ontrol-dependent hardware [22℄.7 Conlusions and Future WorkApplying model heking to �nd errors in real programsis ompliated by the size of the state spae of suh sys-tems. In other �elds where searh through prohibitivelylarge state spaes is required, suh as in AI, the use ofheuristis has proven to be invaluable. Here we proposethe use of heuristis to guide the searh of the JPF modelheker for errors in Java programs.Heuristi searh tehniques are traditionally used tosolve problems where the goal is known and a well-de�nedmeasure exists of how lose any given state is to this goal.The aim of the heuristi searh is to guide the searh,using the measure, to ahieve the goal as quikly (in thefewest steps) as possible. This has also been the tra-ditional use of heuristi searh in model heking: theheuristis are de�ned with regards to the property be-ing heked. Here we also suggest a omplementary ap-proah where the fous of the heuristi searh is moreon the struture of the state spae being searhed, inour ase the Java program from whih the state spae isgenerated.In addition to property-spei� and strutural heuris-tis we also advoate the use of heuristis the user of amodel heker an de�ne that are spei� to the programbeing analyzed. In JPF we provide the exibility to addthese heuristis either as external heuristi funtions oras annotations of the program being model heked.

Our experimental results show that strutural heuris-tis an make error �nding tratable in some systemswhere unguided searhes or searhes using property-spei�heuristis do not work very well. It is lear that stru-tural heuristis an be useful, and the type of programbeing explored (programs with omplex ontrol ow orthat are onurrent) is at least suggestive in making ahoie of heuristi.We believe that the exibility these various stylesof heuristis give the user is an important ontributionto the suess of model heking as a tool for salableand eÆient error-detetion in software systems. How-ever this exibility is also at the root of the biggest openproblem we urrently fae: whih heuristi will work thebest in any given irumstane? Our experiments do notreally give a lear answer to this question. Ignoring user-de�ned heuristis, we are already faed by a dizzying ar-ray of heuristi options and aompanying parameters|e.g. shall we use a branh ounting or the interleavingheuristi, shall we ombine them, do we need to addqueue-limiting, and what should the limit be? One sim-ple approah is to use the simplest of distributed ap-proahes that omputer networks provide and run thou-sands of model heking runs with di�erent heuristi op-tions eah on a di�erent mahine on the network withthe hope that at least one will produe a positive result.A more interesting approah would be to learn whihheuristis would work best. Suh an approah ould useeither the struture of the program ode, or the resultsfrom failed model heking runs to determine whih heuris-tis to use. For example, in Setion 4.3 we show how wean use the results from a rae-analysis of the ode toguide the searh by fousing on the threads that wereinvolved in a rae-violation. A further possibility wouldbe to attempt to apply algorithmi learning tehniquesto �nding good parameters for heuristi model heking.We plan to investigate these ideas further in future work.The development of more strutural heuristis andthe re�nement of those we have presented here is also anopen problem. For instane, are there analogous stru-tures to be explored in the data strutures of a pro-gram to the ontrol strutures explored by our branh-overage heuristis? We imagine that these other heuris-tis might relate to partiular kinds of errors as the in-terleaving heuristi relates to onurreny errors.Referenes1. P. Ammann, P. Blak, and W. Majurski. Using ModelCheking to Generate Tests from Speiations. In Pro-eedings of the 2nd IEEE International Conferene onFormal Engineering Methods, 1998.2. P. Ammann and P. Blak. Test Generation and Reog-nition with Formal Methods. In Proeedings of the 1stInternational workshop on Automated Program Analysis,Testing, and Veriation, pages 64{67, 2000.
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